
Abstract. A general scheme for e�cient implementation
of bond functions in homonuclear triatomics is suggest-
ed and applied to the linear and triangular con®gura-
tions of the helium trimer. It is found that only one set of
midbond functions of size 6s3p can provide nearly all of
the bene®ts obtainable from larger sizes as well as 100%
of the energy lowering obtained with ten sets of d-
functions added at the atom centres. They also enhance
the convergence properties of the many body terms at
the Hartree-Fock and electron correlation levels. Cor-
rect dissociation limits and avoiding spurious minima of
potential wells as well as other linear and triangular
con®gurations are taken into account.
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1 Introduction

In 1964, the idea of using bond functions was introduced
by Preuss [1]. The aim was to replace the atom-centred
higher angular momentum functions at a considerably
lower cost. The utility of bond functions was then tested
by the calculations of the various physical properties of
molecules [2]. In 1977, Burton [3] illustrated the
technique within correlated wave function computations
of intermolecular forces. This involved reducing or
bu�ering the ``ghost orbital'' basis set borrowing by
one species with the function of a neighbouring species,
when the basis set used to describe each species is not
complete. This was achieved by employing Gaussian
functions moved o� the nuclei into the interaction
region. In 1980, CaÂ rsky and Urban [4] reported on the
practical use of bond functions, indicating that there was
a drawback in that general rules for selecting exponents
and the positions of bond functions were still lacking
and it appeared [2a] that the exponents as well as the

position of bond functions did not depend much on the
particular bond. In 1986, Davidson and Feller [5] pointed
out that for ®rst-row diatomics the introduction of a
single �s; p� set at the centre of the bond provided 90% of
the energy lowering obtained with a single set of d-
functions at the nuclear centres. In 1995, Wilson [6]
reported that atom-centred basis sets had been widely
used in molecular calculations designed to match the
accuracy achieved in numerical Hartree-Fock studies of
diatomic molecules. It has recently been shown that they
can be usefully supplemented by o�-centred sets [7].
Indeed, by including bond-centred functions in a system-
atically constructed basis set for the ground state of the
nitrogen molecule, it has been possible to obtain an
energy that is within a few micro-hartrees (lH) of the
numerical results. The success of these calculations, and
others, suggests implementation of bond functions as
well as selecting exponents and positions that lack general
rules. In the present study universal even-tempered basis
sets were selected to guarantee well-de®ned basis sets of
stable quality for di�erent systems [8].

On the other hand, there has been considerable in-
terest in the many-body e�ects of closed shell atoms and
ions [9]. It is conventional to divide the components of
the potential energy surface (PES) of three interacting
atoms into three pair potentials and a three-body, non-
pairwise additive potential. The pair potential is be-
coming well speci®ed for many systems, but much less is
known about the underlying principles governing the
three-body correction to the pair potential. The non-
additive part of the total interaction energy can be sig-
ni®cant when considering the properties of bulk matter
even though non-additive e�ects are much smaller than
the additive part of the interaction energy. At both short
range [10] and long range [11], the interaction potential
is dominated by the two-body terms. However, at very
short distances, this is no longer true [11]. Consequently,
testing the convergence of the many-body e�ects for
systems with N � 3, where N is the number of interact-
ing particles, is a prerequisite for constructing model
potentials and simulation of larger systems. To our
knowledge, the e�ects of bond functions on many-body
terms have not been outlined.
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2 Methods and calculations

2.1 Even-tempered basis sets

A set of even-tempered basis functions is de®ned by

vklm � �r; h;/� � N exp�ÿfkrp�rlYlm�h;/�
where p � 1�2� for exponential (Gaussian) functions. A
systematic sequence of even-tempered basis sets of
Gaussian-type functions of s-, p- and d-symmetry was
generated as described by Schmidt and Ruedenberg [12].
The orbital exponents were taken to form a geometric
series

fk � alb
k
l ; k � 1; 2; . . . ;Nl; �1�

where a and b are dependent on the number of basis
functions Nl, and the angular momentum quantum
number l according to the empirical relations:

ln bl � bl lnNl � b0l; �2�
ln al � al ln�bl ÿ 1� � a0l: �3�
The following values of al; a0l; bl and b0l for helium were
employed: as � 0:3966; a0s � ÿ3:0913; bs � ÿ0:4529 and
b0s � 1:0567. The following basis sets were constructed for
helium: 2ns, 2ns np, 2ns np nd �n � 3ÿ 10�. The nomen-
clature 2ns and 2ns np for helium is used to designate
atom-centred basis sets containing 2n functions with l � 0
and n functions with l � 1 generated according to Eq. (1).
The nomenclature 20s� 2ns and 20s10p � 2ns np is used
to designate atom-centred basis sets 20s and 20s10p to
which basis sets containing 2n midbond functions with
l � 0 and n midbond functions with l � 1 generated
according to Eq. (1) have been augmented.

2.2 Many-body e�ects

The total energy (E) of a micro-cluster of three atoms or
ions may be written as

E �
X3
m�1

E�m; 3�

�
X3

i

E�1; 3�i �
X3
i<j

E�2; 3�ij � E�3; 3�ijk:

The total interaction energy is obtained by subtracting
the monomer energies from the total energy

DE �
X3
m�1

E�m; 3� ÿ
X3

i

E�1; 3�i

�
X3
i<j

E�2; 3�ij � E�3; 3�ijk:

The ®rst and second terms in the last expression
represent the two- and three-body contributions to the
total interaction energy. There are n�nÿ 1�=2, two-body
terms, and n�nÿ 1��nÿ 2�=3, three body terms, where n
is the number of atoms in the ®nite microcluster. This

expression is claimed to be convergent when the three-
body term is considerably smaller than the two-body
terms. Consequently, the positive value of

E�3; 3�ijk

X3
i<j

E�2; 3�ij
,

may be considered to be a measure of the convergence of
the many-body terms. In Tables 1±6, the two-body terms
are written as RE�2� and the three-body terms as E�3�.
Matrix Hartree-Fock self-consistent ®eld (SCF), many-
body perturbation theory (SDTQ-MBPT) and quadratic
con®guration interaction (SDT-QCI) calculations were
performed for the helium trimer in the linear (optimal)
ground-state con®guration and the triangular con®gu-
ration. Calculations were carried out with the program
GAUSSIAN 92 [13].

Table 1. Basis sets, total interaction energies DE, two- �RE�2�� and
three-body �E�3�� terms and the convergence rate �E�3�=RE�2�� � 100

of the many-body terms of the linear con®guration of the helium

trimer at the self-consistent ®eld (SCF) level. All energies are given

in Hartrees and corrected for basis set superposition error (BSSE)

Basis set DE RE�2� E�3� �E�3�=RE�2��
�100

20s 0.0000591 0.0000591 0.0 0.00

20s + 6s 0.0000590 0.0000592 )0.0000002 0.34

20s10p 0.0000582 0.0000581 0.0000001 0.17

20s10p + 6s3p 0.0000581 0.0000580 0.0000001 0.17

Table 2. Basis sets, total interaction energies DE, two- �RE�2�� and
three-body �E�3�� terms and the convergence rate �E�3�=RE�2�� � 100

of the many-body terms of the linear con®guration of the helium

trimer at the MP4SDTQ level. All energies are given in Hartrees

and corrected for BSSE

Basis set DE RE�2� E�3� �E�3�=RE�2��
�100

20s 0.0000714 0.0000710 0.0000004 0.56

20s + 6s 0.0000623 0.0000627 )0.0000004 0.64

20s10p )0.0000292 )0.0000285 )0.0000007 2.46

20s10p + 6s3p )0.0000425 )0.0000382 )0.0000043 11.26

Table 3. Basis sets, total interaction energies DE, two- �RE�2�� and
three-body �E�3�� terms and the convergence rate �E�3�=RE�2�� � 100

of the many-body terms of the linear con®guration of the helium

trimer at the quadratic con®guration interaction (QCISDT) level.

All energies are given in Hartrees and corrected for BSSE

Basis set DE RE�2� E�3� �E�3�=RE�2��
�100

20s 0.0000726 0.0000722 0.0000004 0.55

20s + 6s 0.0000628 0.0000632 )0.0000004 0.63

20s10p )0.0000306 )0.0000296 )0.0000010 3.38

20s10p + 6s3p )0.0000442 )0.0000419 )0.0000023 5.49
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3 Results and discussion

Van der Waals interaction potential of the helium trimer
has been the subject of detailed theoretical investigat-
ions. As early as 1971, Novaro and Beltran-Lopez [14]
calculated the potential of He3 within the SCF-LCAO-
MO approximation to test the pairwise additivity of
intermolecular forces. In the neighbourhood of van der
Waals well ��5:6a0� these were negligible. In 1983, Wells
and Wilson [15] reported the results of an investigation
(at the SCF level) of basis set superposition e�ects
(BSSE) in the study of many-body van der Waals
interactions of the helium trimer. In 1989, Ichihara and
Itoh [16], calculated the interaction potential of the
helium trimer using the con®guration interaction meth-
od and found that BSSE could be avoided using a
reference calculation approximated by a simple formula.
In 1990, Mohan and Anderson [17] used the quantum
Monte Carlo (random walk) method to obtain potential

energies of interaction and determined three-body
corrections to pairwise-additive potential energy expres-
sions. As shown, practical use of bond functions and a
general scheme of implementation for the helium trimer,
and possibly other homonuclear triatomics, are still
lacking.

3.1 General scheme of implementation

Based on the utility of bond functions, tested by
calculations of various properties of molecules, the
following general rules may be suggested for bond-
function augmentation in homonuclear triatomics: (1)
using the speci®ed geometry of a homonuclear triatomic,
saturate atom-centred functions to a sub lH level of
accuracy at the SCF level using at least the ®rst set of
polarization functions, which have the dominant role, to
minimize the BSSE, (2) once a certain size has been
reached, optimize size and location of bond functions
located at each bond, (3) select the exponents of the
optimal bond functions so as to match the same SCF-
interaction energy obtained without bond functions,
(4) prior to PES scans, retain the selected bond functions
at the suggested fractional position from each nucleus
while continuously eliminating the BSSE of the atom-
centred and bond functions at the SCF (and/or) the
post-SCF levels.

3.2 Applications

The linear and triangular con®gurations of the helium
trimer at bond length 5:6a0 are considered [15]. Highly
accurate calculations approaching the sub lH level of
accuracy have been shown to be obtainable using
primitive Gaussian-type functions [18]. In general,
saturation of atom-centred functions is required to
minimize the BSSE attributed to bond function aug-
mentation and large exponent functions are needed to
handle the tight inner-shell orbital(s). Matrix Hartree-
Fock electronic energy calculations were thus performed
using atom-centred primitive Gaussian-type functions of
s-, p- and d-symmetry designated as 2ns, 2ns np and 2ns

Table 4. Basis sets, total interaction energies DE, two- �RE�2�� and
three-body �E�3�� terms and the convergence rate �E�3�=RE�2�� � 100

of the many-body terms of the equilateral triangular con®guration

of the helium trimer (bond length = 5.6 a0) at the SCF level. All

energies are given in Hartrees and corrected for BSSE

Basis

set

DE RE�2� E�3� �E�3�=RE�2��
´ 100

20s +0.0000879 +0.0000888 )0.0000009 1.01

20s + 6s +0.0000877 +0.0000885 )0.0000008 0.90

20s10p +0.0000864 +0.0000873 )0.0000009 1.03

20s10p+6s3p +0.0000864 +0.0000870 )0.0000006 0.69

Table 5. Basis sets, total interaction energies DE, two- �RE�2�� and
three-body �E�3�� terms and the convergence rate �E�3�=RE�2�� � 100

of the many-body terms of the equilateral triangular con®guration

of the helium trimer (bond length = 5.6 a0) at the MP4SDTQ level.

All energies are given in Hartrees and corrected for BSSE

Basis set DE RE�2� E�3� �E�3�=RE�2��
´ 100

20s +0.0001056 +0.0001065 )0.0000009 0.85

20s + 6s +0.0000867 +0.0000999 )0.0000132 13.21

20s10p )0.0000434 )0.0000414 )0.0000020 4.83

20s10p + 6s3p )0.0000606 )0.0000585 )0.0000021 3.59

Table 6. Basis sets, total interaction energies DE, two- �RE�2�� and
three-body �E�3�� terms and the convergence rate �E�3�=RE�2�� � 100

of the many-body terms of the equilateral triangular con®guration

of the helium trimer (bond length = 5.6 a0) at the QCISDT level.

All energies are given in Hartrees and corrected for BSSE

Basis set DE RE�2� E�3� �E�3�=RE�2��
´ 100

20s +0.0001074 +0.0001083 )0.0000009 0.83

20s + 6s +0.0000876 +0.0001005 )0.0000129 12.84

20s10p )0.0000453 )0.0000435 )0.0000018 4.14

20s10p + 6s3p)0.0000629 )0.0000609 )0.0000020 3.28

Table 7. Matrix Hartree-Fock electronic energies of the linear

con®guration of the helium trimer (bond length = 5.6 a0) using

atom-centered basis sets of primitive Gaussian-type function with

s-, p-, and d- symmetry. All energies are given in Hartrees

Basis

set

SCF Basis

set

SCF Basis

set

SCF

6s )8.5817022 6s3p )8.5817207 6s3p3d )8.5817221
8s )8.5844649 8s4p )8.5844665 8s4p4d )8.5844693
10s )8.5848841 10s5p )8.5848846 10s5p5d )8.5848852
12s )8.5849603 12s6p )8.5849607 12s6p6d )8.5849608
14s )8.5849758 14s7p )8.5849765 14s7p7d )8.5849766
16s )8.5849793 16s8p )8.5849803 16s8p8d )8.5849804
18s )8.5849803 18s9p )8.5849812 18s9p9d )8.5849813
20s )8.5849806 20s10p )8.5849815 20s10p10d )8.5849816
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np nd, n � 3ÿ10, and the results are given in Table 7 for
the linear con®guration and Table 8 for the triangular
con®guration. As shown in these tables, an accuracy
approaching the sub lH level (0.3 lH) can be achieved
for the helium trimer using s-, p-, and d- primitive
Gaussian-type functions. When we come to consider the
linear con®guration, the addition of 10p functions to the
20s basis contributes 0:9 lH to the Hartree-Fock ener-
gies, while the addition of 10d functions to the 20s10p
basis set amounts to 0:1 lH. Now, for the triangular
con®guration, the addition of 10p functions to the 20s
basis set contributes 1:5 lH to the Hartree-Fock ener-
gies, while the addition of 10d functions to the 20s10p
basis set amount to 0:1 lH. This implies that, the ®rst set
of polarization functions play the dominant role of
energy lowering and the basis sets 20s and 20s10p are
good starting points for optimizing size and location of
bond functions.

Bond functions have been shown to be quite e�cient
if their exponents and locations are optimized [19]. Since
the centre of the bond is the logical selection of position
in homonuclear triatomics [20], we have concentrated on
size optimization. Using the atom-centred functions 20s
the ®rst set of midbond functions of variable size 6sÿ20s
were added and energy calculations were performed.
This was then followed by simultaneous additions of
®rst and second sets of midbond functions and the
process was repeated with the other atom-centred func-
tions 20s10p. The results are given in Table 9 for the
linear con®guration and Table 10 for the triangular
con®guration. As shown in these tables, the matrix
Hartree-Fock electronic energies were insensitive to the
size of midbond functions and the addition of the second
set of midbond functions has a negligible e�ect. The
minimal size at which midbond functions recover the
most negative electronic energy is either 6s or 6s3p. Two
more facts emerge from these tables: (1) a converged
depth of a potential energy minimum can be reached
using midbond functions and (2) midbond functions
much smaller in size and exponents than atom-centred
functions provide nearly all of the bene®ts obtainable
from larger sizes.

A comparison of the linear con®guration in Tables 7
and 9 shows that while the addition of 6s midbond
functions to the 20s atom-centred basis set recovers 11%
of the energy lowering obtained from the addition of 10p
atom-centred functions to the same basis set, the addi-
tion of 6s3p midbond functions to the 20s10p basis set
recovers 100% of the energy lowering obtained from the
addition of 10d atom-centered functions. Further com-
parison between the triangular con®guration in Tables 8
and 10 shows more or less similar behaviour. The ad-
dition of 6s midbond functions to the 20s atom-centred
basis set recovers 13.3% of the energy lowering obtained
from the addition of 10p atom-centred functions to the

Table 8. Matrix Hartree-Fock electronic energies of the equilateral

triangular con®guration of the helium trimer (bond length = 5.6

a0) using atom-centered basis sets of primitive Gaussian-type

function with s-, p-, and d- symmetry. All energies are given in

Hartrees

Basis

set

HF Basis

set

HF Basis

set

HF

6s )8.5816851 6s3p )8.5817127 6s3p3d )8.5817149
8s )8.5844379 8s4p )8.5844401 8s4p4d )8.5844443
10s )8.5848561 10s5p )8.5848569 10s5p5d )8.5848577
12s )8.5849319 12s6p )8.5849326 12s6p6d )8.5849326
14s )8.5849471 14s7p )8.5849482 14s7p7d )8.5849484
16s )8.5849506 16s8p )8.5849520 16s8p8d )8.5849521
18s )8.5849515 18s9p )8.5849530 18s9p9d )8.5849531
20s )8.5849518 20s10p )8.5849533 20s10p10d )8.5849534

Table 9. The e�ect of midbond functions on the matrix Hartree-

Fock electronic energies of the linear con®guration of the helium

trimer (bond length = 5.6 a0). All energies are given in Hartrees

and (+) stands for the addition of one set of midbond functions

Basis set SCF Basis set SCF

20s+6s )8.5849807 20s+6s+6s )8.5849808
20s+8s )8.5849807 20s+8s+8s )8.5849808
20s+10s )8.5849807 20s+10s+10s )8.5849808
20s+12s )8.5849807 20s+12s+12s )8.5849808
20s+14s )8.5849807 20s+14s+14s )8.5849808
20s+16s )8.5849807 20s+16s+16s )8.5849808
20s+18s )8.5849807 20s+18s+18s )8.5849808
20s+20s )8.5849807 20s+20s+20s )8.5849808
20s10p+6s3p )8.5849816 20s10p+6s3p+6s3p )8.5849816
20s10p+8s4p )8.5849816 20s10p+8s4p+8s4p )8.5849816
20s10p+10s5p )8.5849816 20s10p+10s5p+10s5p )8.5849816
20s10p+12s6p )8.5849816 20s10p+12s6p+12s6p )8.5849816
20s10p+14s7p )8.5849816 20s10p+14s7p+14s7p )8.5849816
20s10p+16s8p )8.5849816 20s10p+16s8p+16s8p )8.5849816
20s10p+18s9p )8.5849816 20s10p+18s9p+18s9p )8.5849816
20s10p+20s10p )8.5849816 20s10p+20s10p+20s10p )8.5849816

Table 10. The e�ect of midbond functions on the matrix Hartree-

Fock electronic energies of the equilateral triangular con®guration

of the helium trimer (bond length = 5.6 a0). All energies are given

in Hartrees and (+) stands for the addition of one set of midbond

functions

Basis set SCF Basis set SCF

20s+6s )8.5849520 20s+6s+6s )8.5849520
20s+8s )8.5849521 20s+8s+8s )8.5849521
20s+10s )8.5849520 20s+10s+10s )8.5849521
20s+12s )8.5849520 20s+12s+12s )8.5849521
20s+14s )8.5849520 20s+14s+14s )8.5849521
20s+16s )8.5849521 20s+16s+16s )8.5849521
20s+18s )8.5849521 20s+18s+18s )8.5849521
20s+20s )8.5849521 20s+20s+20s )8.5849521
20s10p+6s3p )8.5849533 20s10p+6s3p+6s3p )8.5849533
20s10p+8s4p )8.5849533 20s10p+8s4p+8s4p )8.5849533
20s10p+10s5p )8.5849533 20s10p+10s5p+10s5p )8.5849533
20s10p+12s6p )8.5849533 20s10p+12s6p+12s6p )8.5849533
20s10p+14s7p )8.5849533 20s10p+14s7p+14s7p )8.5849533
20s10p+16s8p )8.5849533 20s10p+16s8p+16s8p )8.5849533
20s10p+18s9p )8.5849533 20s10p+18s9p+18s9p )8.5849533
20s10p+20s10p )8.5849533 20s10p+20s10p+20s10p )8.5849533
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same basis set. The addition of 6s3p midbond functions
to the 20s10p basis set has no e�ect on energy lowering,
but the addition of 10d atom-centered functions
amounts to only )0.1 lH. Consequently, midbond
functions of low angular momentum symmetry can
reproduce the matrix Hartree-Fock electronic energies
normally to be achieved by use of atom-centred func-
tions of high angular momentum symmetry with con-
siderably lower computational e�ort and cost.

According to the theoretical analysis of Tao and Pan
[21], bond functions are used for the improved descrip-
tion of molecular orbitals in the excited con®gurations at
the correlated level and, consequently, the Hartree-Fock
energies should not be a�ected considerably by the
addition of bond functions. It is also noted that use of
bond functions may be rationalized by realizing that
there is an e�ective nucleus in the middle of the nuclei
for any electrons far from the nuclei (in the excited
con®guration state) and so the whole system may be
perceived as a Rydberg system whose states can be better
described by midbond functions [21]. On this basis we
examine the e�ect of midbond functions on the Hartree-
Fock interaction energy of the helium trimer. The Har-
tree-Fock interaction energies DE of the linear con®gu-
ration were calculated to be 59.1 and 58.2 lH using the
basis sets 20s and 20s10p. When the midbond functions
6s and 6s3p were added, these were calculated to be 59
and 58.1 lH Table 1. For the triangular con®guration,
the Hartree-Fock interaction energies DE were calcu-
lated to be 7.9 and 6.4 lH using the basis sets 20s and
20s10p. When the midbond functions 6s and 6s3p were
augmented, these were calculated to be 7.9 and 6.4 lH,
Table 4. Clearly, the Hartree-Fock interaction energies
are not signi®cantly a�ected and the condition for
proper use of bond functions is ful®lled.

The convergence of the many-body terms is a
prerequisite for constructing model potentials and si-
mulation of larger systems. If non-pairwise additive
contributions of the helium trimer are negligible, total
interaction energy will be well represented as the sum of
two-body terms. We are therefore interested in the e�ect
of bond functions on the convergence properties of the
many-body expansion. Total interaction energies as well
as the two- and three-body terms of the many-body ef-
fects at the Hartree-Fock (SCF) and electron correlation
levels are given in Tables 1±3 for the linear con®guration
and Tables 4±6 for the triangular con®guration. The
electron correlation level includes the MBPT and QCI
methods. Interaction energies were corrected for BSSE
attributed to atom-centred and midbond functions using
Boys and Bernardi function counterpoise method [18].
BSSE corrections were made to avoid any possible
spurious minima. Several facts emerge from these tables:
while midbond functions have negligible contributions
to the total interaction energies and the energy terms of
the many-body expansion at the SCF level, they do have
signi®cant contributions at the MBPT and QCI electron
correlation levels. The total interaction energies and the
two-body terms of the QCI method are signi®cantly
larger than the MBPT values. The SCF energy of the
linear con®guration of the helium trimer contributes to
the repulsion between helium atoms, in terms of the total

interaction energies and the two and three-body com-
ponents. The QCI and MBPT energies contribute to
the attraction when the polarization p-functions are in-
cluded. The SCF energy of the triangular con®guration
contributes to the repulsion of helium atoms in terms of
the total interaction energy and three-body terms, while
the QCI an MBPT energies contribute to the attraction
when the polarization p-functions are included.

In order to investigate the accuracy of interaction
potentials, we consider the contributions from three-
body terms. A many-body perturbation calculation of
Wells and Wilson [15] indicates a three-body component
of 0.00 lH for the linear con®guration and ÿ0:43 lH
for the triangular con®guration at R � 5:6a0. In their
calculations, an even-tempered Gaussian basis set
�8s4p2d1f � and site-site CP method were employed. SD-
CI treatment of Ichihara and Itoh [16] indicates a three-
body component of ÿ0:63lH for the linear con®gura-
tion and 8:55lH for the triangular con®guration at
R � 5:6a0. They used �4s1p1d� basis set optimized to
describe the interaction of the helium dimer system. In
their comment on the discrepancy between their result
and that of Wells and Wilson for the linear con®gura-
tion, they considered the defect of their small basis set to
be trivial, since the two helium atoms on both sides are
separated and the three-body e�ect is expected to be
quite small. For the linear con®guration, Table 2, the
three-body components were calculated to be 0.4 and
ÿ0:7 lH at the SDTQ-MBPT level using the basis sets
20s and 20s10p. In Table 3, these were calculated to be
0.4 and ÿ1:0 lH at the SDT-QCI level using the same
basis sets. When midbond functions were augmented,
three-body components were calculated to be )0.4 and
ÿ4:3 lH at the SDTQ-MBPT level using the basis sets
20s� 6s and 20s10p � 6s3p, respectively, as well as )0.4
and 2:3 lH at the SDT-QCI level using the same basis
sets. For the triangular con®guration, Table 5, the three-
body terms were calculated to be )0.9 and ÿ2:0 lH at
the SDTQ-MBPT level using the basis sets 20s and
20s10p. In Table 6 these were calculated to be )0.9 and
ÿ1:8 lH at the SDT-QCI level using the same basis set.
When midbond functions were included, the three body
components were calculated to be )13.2 and ÿ2:1 lH
using the basis sets 20s� 6s and 20s10p � 6s3p, respec-
tively, as well as )12.9 and ÿ2:0 lH at the SDT-QCI
level using the same basis sets. The present results are
comparable and we may attribute any discrepancies
either to the neglect of higher polarization functions or
higher excitations of the electron correlation treatment.

On the other hand, the many-body expansion terms
converge rapidly after the two-body terms at both the
Hartree-Fock and electron correlation levels. The per-
centage contributions of the three-body terms E�3� rela-
tive to the sum of the two-body terms RE�2� are given in
the last columns of Tables 1±3 for the linear con®gura-
tion and Tables 4±6 for the triangular con®guration. We
may consider these contributions as a measure for the
convergence rate of the many-body expansion terms. As
shown, the addition of midbond functions improves the
convergence properties of the many-body e�ects at the
SCF level as well as the electron correlation levels of the
triangular con®guration provided that the polarization
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p-functions are included. The contribution of the E�2�
terms relative to the RE�2� terms at the QCI level are
smaller and the corresponding interaction energies DE
are more negative relative to the MBPT level. This im-
plies that the QCI method provides a more accurate
description of the many-body e�ects in the helium tri-
mer. Since the convergence of the many-body terms is a
prerequisite for constructing model potential and simu-
lation of larger systems, it is apparent that the interac-
tion potential of the helium trimer can be mainly
described by the sum of two-body interactions.

The matrix Hartree-Fock electronic energies of the
linear and triangular con®gurations of the helium trimer
at di�erent bond lengths are given in Tables 11 and 12.
The most important output of these tables is that the
contributions of bond functions to the energy lowering
get smaller with increasing the interatomic distance (R)
and at R > 5:6a0 the energies of the triangular con®gu-
rations are more negative than the corresponding linear
con®gurations. For the two types of structures, bond
functions have negative contributions to the energies at
R � 2:6ÿ 5:6a0 but at R � 6:6a0 they have positive
contributions to the energies of the linear con®guration
and completely negligible e�ects on the energies of the
triangular con®guration.
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Table 11. Matrix Hartree-Fock electronic energies of the linear

con®guration of the helium trimer at di�erent bond lengths. All

energies are given in Hartrees

R/a0 20s 20s+6s 20s10p 20s10p+6s3p

2.6 )8.5162724 )8.5517437 )8.5177070 )8.5520935
3.6 )8.5779778 )8.5815327 )8.5781133 )8.5815802
4.6 )8.5843728 )8.5846799 )8.5843846 )8.5846850
5.6 )8.5849806 )8.5849807 )8.5849815 )8.5849816
6.6 )8.5850348 )8.5850077 )8.5850349 )8.5850082
7.6 )8.5850394 )8.5850100 )8.5850394 )8.5850105
8.6 )8.5850398 )8.5850102 )8.5850398 )8.5850107

Table 12.Matrix Hartree-Fock electronic energies of the equilateral

triangular con®guration of the helium trimer at di�erent bond

lengths (R) in a0. All energies are given in Hartrees

R/a0 20s 20s+6s 20s10p 20s10p+6s3p

2.6 )8.4974180 )8.4984877 )8.4998791 )8.4999742
3.6 )8.5751872 )8.5752470 )8.5753904 )8.5753952
4.6 )8.5840666 )8.5840708 )8.5840843 )8.5840845
5.6 )8.5849518 )8.5849520 )8.5849533 )8.5849533
6.6 )8.5850323 )8.5850323 )8.5850324 )8.5850324
7.6 )8.5850392 )8.5850392 )8.5850392 )8.5850392
8.6 )8.5850398 )8.5850398 )8.5850398 )8.5850398
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